Separability with Outliers
نویسندگان
چکیده
We develop exact and approximate algorithms for computing optimal separators and measuring the extent to which two point sets in d-dimensional space are separated, with respect to different classes of separators and various extent measures. This class of geometric problems generalizes two widely studied problem families, namely separability and the computation of statistical estimators.
منابع مشابه
Image Quality Assessment and Outliers Filtering in an Image-Based Animal Supervision System
This paper presents a probabilistic framework for the image quality assessment (QA), and filtering of outliers, in an image-based animal supervision system (asup). The proposed framework recognizes asup’s imperfect frames in two stages. The first stage deals with the similarity analysis of the same-class distributions. The objective of this stage is to maximize the separability measures by defi...
متن کاملLinear discriminant analysis using rotational invariant L1 norm
Linear discriminant analysis (LDA) is a well-known scheme for supervised subspace learning. It has been widely used in the applications of computer vision and pattern recognition. However, an intrinsic limitation of LDA is the sensitivity to the presence of outliers, due to using the Frobenius norm to measure the inter-class and intra-class distances. In this paper, we propose a novel rotationa...
متن کاملSystematic Methods for Multivariate Data Visualization and Numerical Assessment of Class Separability and Overlap in Automated Visual Industrial Quality Control
The focus of this work is on systematic methods for the visualization and quality assessment with regard to classification of multivariate data sets. Our novel methods and criteria give in visual and numerical form rapid insight in the principal data distribution, the degree of compactness and overlap of class regions and class separability, as well as information to identify outliers in the da...
متن کاملAdversarially Learned One-Class Classifier for Novelty Detection
Novelty detection is the process of identifying the observation(s) that differ in some respect from the training observations (the target class). In reality, the novelty class is often absent during training, poorly sampled or not well defined. Therefore, one-class classifiers can efficiently model such problems. However, due to the unavailability of data from the novelty class, training an end...
متن کاملEvaluation of Tests for Separability and Symmetry of Spatio-temporal Covariance Function
In recent years, some investigations have been carried out to examine the assumptions like stationarity, symmetry and separability of spatio-temporal covariance function which would considerably simplify fitting a valid covariance model to the data by parametric and nonparametric methods. In this article, assuming a Gaussian random field, we consider the likelihood ratio separability test, a va...
متن کامل